
Lab 3 Report: Wall-Following on the Racecar

Team 8

Monica Chan
Cristine Chen

Kyle Fu
Asa Paparo

RSS

March 15, 2025

1 Introduction

Author: Kyle Fu
Editor: Monica Chan

This lab focused on designing two key components of an autonomous robotic
system: a safety controller and a wall follower. The safety controller ensures
safe operation by preventing collisions with walls and pedestrians, allowing us
to test our robot in autonomous mode without risk. The wall follower enables
the robot to navigate autonomously along the walls of structures like the Stata
basement. Figure 1 shows the hardware and software components involved.

Figure 1: High level overview of the lab. The hardware components include
the LiDAR, motor controller, and motor. Safety controller and wall follower
software modules publish drive commands to the motor controller.

1



The primary goal of this lab was to develop and tune PID controllers while
ensuring robust and modular design principles for safe and reliable autonomous
navigation. The safety controller was required to detect imminent collisions
and stop the robot in time, using a kinematic-based approach that calculates
stopping distance based on the robot’s velocity and obstacles ahead. To ensure
reusability across future labs, we implemented the safety controller as a stan-
dalone ROS package.

For the wall follower, the robot needed to follow walls while going straight, mak-
ing turns, and maintaining a target distance from either the left or right wall.
Our approach involved extracting wall points from LiDAR data, fitting a line to
those points, and using a PD and P controller to track the distance and relative
angle to the line. This provides a balance between responsiveness and stability
in navigation.

This lab reinforced key concepts in control design and safety-critical autonomy,
contributing to the broader development of reliable robotic systems in RSS.

2 Technical Approach

Author: Monica Chan
Editor: Kyle Fu

2.1 Safety Controller

Our safety controller is designed to prevent collisions with objects, walls, and
people using a time-based kinematic approach. Figure 2 provides an overview
of how the controller ensures safe stopping when an obstacle is detected within
a critical range.

Figure 2: Explanation of safety controller function. The right image shows a
situation where the safety controller would stop the robot, since the time to
collision is under 0.5 seconds.

2



The system enforces a minimum stopping time of 0.5 seconds, meaning if the
ratio of the current distance to an obstacle and the robot’s commanded velocity
falls below 0.5 seconds, the robot will command its velocity to zero. Equation
1 formalizes this condition:

tstop =
d

v
< 0.5sec (1)

where d is the measured distance to the nearest object and v is the robot’s
current velocity.

To prevent unnecessary stops while maintaining safety, we evaluate obstacles
within an angular range of −π/12 to π/12 in front of the robot. This range was
determined through empirical tuning, particularly by observing the controller’s
performance in the wall-following task. We found expanding this range made
the controller overly conservative, often causing the robot to halt unnecessarily
in tight spaces or sharp turns, as demonstrated in Figure 3.

Figure 3: Illustration of robot failing a turn when the considered range of points
is too large, causing the robot to be overconservative in stopping.

In addition to collision avoidance, the safety controller includes a watchdog timer
to handle sensor failures. This watchdog monitors incoming LiDAR scan mes-
sages and ensures the robot stops if no data is received. This prevents undefined
behavior that could arise from hardware malfunctions or communication fail-
ures. We structured the safety controller as a separate ROS package, ensuring
modularity and reusability for future autonomous navigation tasks.

2.2 Wall Follower

Our wall follower maintains a desired speed v and specified distance Ddesired

from either the left or right wall while going straight and making left or right
turns. Figure 4 provides an architectural overview, illustrating how the robot
adjusts its trajectory based on LiDAR data. We break the process into 3 parts:
filtering the lidar points, the distance controller, and the angle controller.

3



Figure 4: Overview of our wall following process. We begin by filtering the
points and fitting a line to the points that make up the wall. Then we implement
a distance and angle controller to calculate a new steering command.

2.2.1 Point Filtering

In the same way the safety controller only considers a portion of the total points,
not all points returned by the LiDAR are necessary for effective wall-following.
The primary goal of our point selection system is to retain only the points that
define the wall while filtering out irrelevant measurements. Figure 5 illustrates
our point filtering algorithm.

Figure 5: Process of filtering irrelevant points and finding the wall. We first
remove all points outside of our angular range (white lines). Then we filter out
points with a large gap, such as on the turn, which removes the points on the
front wall. We finally fit a line to estimate the wall.

We begin by filtering points based on their angular range relative to the front
of the robot. The chosen range depends on whether the robot follows the right
or left wall:

4



• Left wall: Consider points within [−π/6, π/2]

• Right wall: consider points within [−π/2, π/6]

These ranges were empirically tuned using both our simulation environment and
the physical robot to ensure robust wall and corner detection.

After selecting points within the desired angular range, we filter out points that
are not part of the wall by removing large gaps in the detected wall structure.
This is implemented using Algorithm 1, which iterates through the points and
filters out any that are too far apart from the previous point (either exceeding
a predefined max gap, or being disproportionally far apart given its distance
from the robot). These checks ensure gaps solely due to the LiDAR’s scanning
resolution are not filtered, but big gaps in the wall are.

pts ← get scan range()

final pts ← []
for each pt in pts do

last pt ← final pts[−1]
if last pt is not None then

gap ← euclidean distance(pt, last pt)
robot dist ← euclidean distance(last pt)
if gap > max gap or (robot dist > desired distance and gap >
robot dist/η) then

break
end

end
final pts.append(pt)

end
Algorithm 1: Point Filtering for Wall Detection. max gap = 0.6, η = 2.5
are empirically tuned scalars.

Once we have filtered the relevant points, we fit a line to them using NumPy’s
polynomial fit function. This line serves as the reference wall, allowing our con-
trollers to compute an appropriate steering command.

2.2.2 Distance Controller

We implemented a Proportional-Derivative (PD) controller to maintain a de-
sired distance from the wall, similar to our approach in Lab 2 (Wall Following
in Simulation). Using the line fitted to the wall, we compute an error function,
as defined in Equation 2.

e(t) = Ddesired −Dwall(t) (2)

5



u(t) = Kpe(t) +Kd
d

dt
e(t) (3)

where e(t) is the error function and u(t) is the distance controller’s steering
command. The steering output of the PD controller, given by Equation 3, en-
sures the robot remains at the target distance from the wall.

We opted for a PD controller instead of a full PID controller because our test-
ing—both in simulation and on the physical robot—showed minimal steady-
state error, rendering the integral term unnecessary. We tuned the distance
controller empirically, increasing Kp until the system oscillated slightly, then
increasing Kd to prevent oscillations. Our physical robot used Kp = 0.75 and
Kd = 0.1. We note that the ideal PD values were higher in simulation due to
different car dynamics.

2.2.3 Angle Controller

During simulation testing, we observed a distance-only controller performed well
on inward turns, but struggled with outward turns.

• Inward turn: A turn in the same direction as the followed wall (e.g. a
right turn while following the right wall).

• Outward turn: A turn opposite to the wall’s direction (e.g. a left turn
while following the right wall).

The distance controller failed to anticipate outward turns, reacting too late and
causing the robot to overshoot the turn, as seen in Figure 6.

Figure 6: Motivation for the angle controller. This robot simulation runs only a
distance controller, causing our robot to turn late on outward turns and collide
with the front wall.

To handle outward turns, we introduced a secondary angle controller that en-
courages the robot to maintain a parallel orientation to the wall. With this

6



controller, when approaching a corner, the robot begins its turn earlier to main-
tain the correct heading. After experimenting with control strategies, we found
a Proportional (P) controller produced the most stable performance.

The angle controller’s output, given by Equation 5, is combined with the dis-
tance controller’s output to generate the final steering command, as shown in
Equation 6:

eθ(t) = −θwall(t) (4)

uθ(t) = Apeθ(t) (5)

θcommanded(t) = u(t) + uθ(t) (6)

where θwall is the angle between the robot and the wall, Ap is the proportional
coefficient for the angle controller, and θcommanded is the commanded steering
angle of the robot.

We tuned the angle controller after tuning the distance controller, increasing
Ap until the robot handled both inward and outward turns well. Our angle
controller on the physical robot used Ap = 0.2.

3 Experimental Evaluation

Author: Cristine Chen
Editor: Asa Paparo

3.1 Safety Controller

We tested our safety controller first by positioning the robot on a brick and
running the wall follower code. Next, we placed the bin lid in front of the
robot’s line of sight to assess its response. Figure 7 illustrates our initial process
for evaluating the safety controller. When we start the wall follower code, the
robot’s wheels spin rapidly, as evidenced by the slight motion blur in the wheels.
However, as the bin is brought closer to the robot’s line of sight, the safety con-
troller activates. The robot detects the approaching obstacle and responds by
locking its wheels in place.

Figure 7: Set-up for the safety controller test on the brick.

7



After confirming that our safety controller worked as expected in the brick test,
we moved to the hallways of Stata basement to conduct further trials. We ran
the wall follower code on the robot and quickly used the bin lid to block its path
to evaluate its response to unexpected obstacles. Figure 8 illustrates how the
robot successfully detected the obstruction and came to a stop without making
contact.

Figure 8: Set-up for the safety controller test in action.

We assessed our time-based safety controller’s effectiveness across different ve-
locities through tests at v = 1 m/s and v = 2 m/s. The setup of our experiments
is shown in Figure 9. To ensure consistency, we marked a designated spot in the
robot’s path with tape to indicate where the bin lid would be placed. The robot
is positioned at varying distances from the designated spot from where it would
be run. Then, using the wall-follower, it proceeds along its path, encounters the
obstacle, and stops. The distance from the marked spot is subsequently mea-
sured. Each velocity was tested across three trials, with the results presented
in Table 1 and Table 2.

Figure 9: Setup of the experiment for trials recorded in Tables 1 and Table 2.

8



Trial Number Stopping Distance (m)
1 0.298
2 0.339
3 0.307

Table 1: Stopping distance of robot across three trials with v = 1 m/s.

Trial Number Stopping Distance (m)
1 0.393
2 0.352
3 0.368

Table 2: Stopping distance of robot across three trials with v = 2 m/s.

We found the average stopping distance to be 0.315 m for v = 1 m/s and 0.371
m for v = 2 m/s. This aligns with our expectations for a time-based safety
controller, as a higher velocity results in an earlier stop to compensate for the
increased speed. Additionally, there were no outliers in our trials, with stop-
ping distances clustering closely around the mean. The standard deviation was
approximately 0.022 m, and the range was 0.041 m for both tested velocities,
indicating consistent performance across trials. Based on the data, our safety
controller successfully achieved its objective of enabling the robot to avoid col-
lisions while maintaining its functionality.

3.2 Wall Follower

After observing that the robot could follow a straight wall with minimal oscil-
lations, we sought to evaluate its performance during turns. We assessed the
robot’s performance while making left and right turns in the hallways of the
Stata basement at v = 1 m/s and v = 2 m/s in Table 3 and 4, respectively. We
measured both the average minimum and global minimum distances from the
wall using ROS bag data collected during the robot’s turns.

Turn Type Avg. Minimum
Distance From

Wall (m)

Global Min.
Distance From

Wall (m)
Left Turn 0.928 0.893
Right Turn 0.836 0.694

Table 3: Minimum distance from the wall during turns at v = 1 m/s

9



Turn Type Avg. Minimum
Distance From

Wall (m)

Global Min.
Distance From

Wall (m)
Left Turn 0.655 0.648
Right Turn 0.382 0.157

Table 4: Minimum distance from the wall during turns at v = 2 m/s

We also plotted the error, defined as the difference between the robot’s minimum
distance from the wall and its desired distance of 1 m, during left and right turns
at v = 1 m/s and v = 2 m/s in Figures 10-11 and Figures 12-13, respectively. A
positive error indicates that the robot was further from the wall than its desired
distance of 1 m while a negative error signifies that the robot was too close to
the wall.

Figure 10: Graph of error over time during the robot’s left turn at v = 1 m/s.

10



Figure 11: Graph of error over time during the robot’s left turn at v = 2 m/s.

Figure 12: Graph of error over time during the robot’s right turn at v = 1 m/s.

11



Figure 13: Graph of error over time during the robot’s right turn at v = 2 m/s.

From the data, it is evident that the robot performs worse when making right
turns compared to left turns, exhibiting a larger error and more oscillations
during its right turns. Additionally, the robot’s performance is significantly de-
graded at the higher velocity of v = 2 m/s, where it fails to successfully complete
the turn towards the end, requiring the intervention of the safety controller to
prevent a collision with the wall. While there is still room for improvement,
our wall follower successfully achieved our objective of consistently tracking the
designated side of the wall with minimal oscillations while maintaining the de-
sired distance at v = 1 m/s.

4 Conclusion

Author: Asa Paparo
Editor: Cristine Chen
In this lab, we successfully implemented robust wall following and safety con-
trollers that met the qualitative criteria we outlined. Specifically, our wall fol-
lower can follow either wall at a constant velocity and perform inward, outward
turns without oscillation. The safety controller has been tested to avoid crashing
into various targets at multiple velocities. In the future, we intend to improve
our line following algorithm to be more rigorous than the sum of a distance and
angle controller, as this will allow for more consistent results when following
tape during subsequent design phases. We also aim to tune our PID values

12



to accommodate higher velocities, as we primarily used v = 1 m/s for the as-
sessment of our system. Higher velocities have shown to cause difficulties in
making turns, and optimizing the PID parameters will help improve the robot’s
performance at these speeds.

5 Lessons Learned

5.1 Monica Chan

5.1.1 Technical

I learned that using RViz for debugging is highly beneficial, as it helps identify
issues that may not be immediately apparent. For example, while collecting
ROS bag data for turns, I noticed that one turn had an unusually small minimum
distance. By visualizing the sensor data in RViz, we discovered that the LiDAR
was detecting wires, which caused the discrepancy. This experience reinforced
the importance of using visualization tools to diagnose unexpected behaviors in
the system.

5.1.2 CI

I learned that having a shared Google Drive was extremely helpful, as it kept
all materials organized in one place. Additionally, maintaining a brainstorming
document allowed us to record ideas and decisions, ensuring that everyone was
on the same page. This improved communication, facilitated information shar-
ing, and helped establish a clear, shared understanding of tasks and objectives.

5.2 Cristine Chen

5.2.1 Technical

I learned how to set up a launch file and configure it with parameters from
YAML files. Additionally, I discovered that storing PID tuning parameters in
the YAML files is a best practice, as it allows for easier adjustments without
the need to modify the code directly.

5.2.2 CI

I learned that maintaining comprehensive documentation for each part of our
system is essential. Since our team members have different schedules, having
a shared resource allows anyone attending office hours to access the necessary
information without waiting for others to respond. This is especially important
given that we worked on different aspects of the project, ensuring continuity
and efficiency in our collaboration.

13



5.3 Kyle Fu

5.3.1 Technical

I learned there are major differences between the simulation and the physical
racecar. In particular, the PID parameters had to be tuned down a lot on the
physical racecar due to different car dynamics. When we first used the simu-
lation values, the car oscillated a lot, requiring us to dampen parameters. We
tuned the distance and angle controllers separately to efficiently find good pa-
rameters. It’s much faster to iterate in simulation than on the physical racecar.
Also, I learned that robotics is full of approximate algorithms, and that it’s
basically impossible to account for all edge cases in a robotics system.

5.3.2 CI

I learned having a consistent, weekly meeting time outside of class helped with
keeping our team on track, without the added decision fatigue of having to
coordinate on a new time every meeting. I also learned the importance of
keeping solution approaches understandable, which helped when explaining code
to team members and documenting it in both the briefing and the report. I
practiced making clear assertions, along with the right amount of technical
detail for the audience, in briefing slides and reports.

5.4 Asa Paparo

5.4.1 Technical

I learned that the loop times of the VESC low-level controller were lower and
less consistent than expected. I originally intended to implement a watchdog as
an additional component to the safety controller, which would stop the robot
if the commands were not being published at consistent intervals. However, I
found that this approach inadvertently caused the robot to become paralyzed,
as commands were not being published consistently.

5.4.2 CI

I learned that having a shared communication channel was invaluable for col-
laborating with teammates. We created a Messenger group chat when our team
was initially put together, and we have used it very frequently since then. It
facilitated coordination for meetings during office hours and tracked each team
member’s progress. Additionally, it proved useful for asking questions and re-
ceiving advice and opinions from others.

14


